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Abstract

Weakly damped oscillatory modes in ODE systems, such as are generated from advection-
dominated PDE problems, frequently cause difficulty for BDF integrators, because of their
absolute stability regions at high orders. We describe a procedure to detect the stability limit
responsible for the difficulty. From it, we form a detection algorithm, which we have added
to the order selection logic in an experimental version of the ODE solver VODE. Tests on an
advection-diffusion problem demonstrate the effectiveness of this algorithm in lowering order

to avoid the stability limit.

1 Introduction

The Method of Lines is a powerful and versatile approach to solving time-dependent partial differ-
ential equations, and integrators based on Backward Differentiation Formula (BDF) methods are
probably the most common choice for the solution of the resulting ODE systems. But when the
Method of Lines is applied to advection-dominated PDE problems (among others), the resulting
ODE system is typically characterized by weakly damped but strongly oscillatory modes. When a
BDF method of order three or more is used on such a system, the step size may be unduly limited,
because the absolute stability region of the method omits a pair of lobes in the left half plane. See
Figure 1, which shows the boundary of the absolute stability region for orders 3, 4, and 5 (with
horizontal axis exaggerated). Linear stability theory requires A to lie in the region for each eigen-
value A of the system and each stepsize h used. Indeed, existing BDF codes very often perform
poorly in this situation. They include some means of selecting the method order in a dynamic
manner, based primarily on estimated local truncation errors, obtained from approximate scaled

*This work was performed under the auspices of the U.S Department of Energy by the Lawrence Livermore
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derivatives of the solution of various orders. In some cases, there have been indirect attempts to
use the scaled derivatives also to signal a reduction in order when the stepsize is stability-limited.
But until now no BDF solver has included a direct attempt to detect the presence of this stability

limit.
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Figure 1: Boundary of the BDF absolute stability region S in the 2 plane for orders 3, 4, and 5.
For a given nonreal ), the requirement Ak € S on stepsize h may unduly constrain A.

In an earlier paper [3], we analyze the scaled derivatives arising in the case where the numerical
solution is completely dominated by a fixed, mildly damped, oscillatory mode. The analysis was
done first for the complex scalar test equation, and then extended to the case of pair of real
ODEs with nonreal eigenvalues. Elimination of the unknown parameters leads to a procedure for
detecting the stability limit. The procedure is applied to the norms of the scaled derivatives of
the solution, of orders ¢ — 1, ¢, and ¢ + 1 if the current order is ¢, and gives a value for the size of
the dominant characteristic root. Stand-alone tests of the procedure on data from a simple ODE
of size 2 were very encouraging.

At least three earlier authors have addressed the issue of detecting stability limits. In [4], Krogh
gives a sign-change test designed to detect instability for certain PECE methods. It is simple and
inexpensive, but relies on method-specific properties of the dominant extraneous characteristic
roots. In [5], Skelboe derives approximate relations for the local truncation error in BDF methods,
and poses a stability test using the norms of scaled derivatives. It is also simple, but it is based
in large part on approximations and heuristics. In [1], Brenan, Campbell, and Petzold, using
the order selection strategy in the Adams solver of Shampine and Gordon [6], describe a test for
monotonicity of the scaled derivative norms. They use this in the BDF solver DASSL, with the idea
that failure of the monotonicity test indicates that a stability boundary has been encountered. But
it is also quite imprecise, in that the crossing of the stability boundary may or may not correspond



to a violation of monotonicity. Even for the linear scalar model problem, in separate calculations,
it has been observed that monoticity may hold outside the stability region, and it may fail to hold
inside the region [3].

Here we use the procedure in [3] to form an algorithmic addition to the order selection scheme
of the Adams/BDF solver VODE [2], whereby the order is reduced when a stability limitation
is detected while using the BDF method. This algorithm has been installed in an experimental
version of VODE. We use a simple advection-diffusion PDE in one space dimension to test the

algorithm.

2 Stability Limit Detection

For the sake of completeness, we begin with a summary of the procedure for detecting the BDF
stability limit. Details are available in [3].

To begin with, consider the BDF solution of the standard scalar test equation, & = Au, with
a complex constant A, Re(A) < 0, at order ¢ > 3 and fixed stepsize A. In the stability-limiting
situation, the discrete solution values u, are dominated by the n-th powers of a single characteristic
root z; (a function of A)) associated with the BDF method, with |z;] & 1. (The absolute stability
region is that in which |z;{ < 1 for all the characteristic roots.) The scaled derivatives o,(k) =
h*u¥) defined by way of the interpolating polynomial of degree ¢, are also dominated by z7.
Working with o,(k) for k = ¢ —1,¢,q + 1, one can easily eliminate the unknown proportionality
constants and solve for |z].

In the analogous BDF solution of a real linear system, where one or more of the eigenvalues
is capable of causing a stability limit, we can assume that one of them, A, will be such that AA is
the first one to approach or cross the stability region boundary. In that case, the BDF solution
is eventually dominated by the powers of a single characteristic root 2; corresponding to kJ\, so
that the solution and its scaled derivatives A*y(¥) behave as if they were generated by a 2 x 2
linear system with eigenvalues A and . This situation was also analyzed in [3]. It is necessary
(and reasonable) to assume that a weighted L, norm is used for all error-like vectors and that
the weights on the two component are equal. It can then be shown that the squared norms
S.(k) = ||h*y{¥)||? have the form

Sa(k) = Gilz1|*™[1 + 7y cos(2n8 + 1)), (1)

where 6 = arg(z;), for constants Gy, vk, and + (the last being independent of k).

In the special case that the system Jacobian is a normal matrix, the constant v vanishes,
and for each k the ratios S,41(k)/Sn(k) = |z1|* give the quantity |2;| we seek. In the genéral
case, the oscillatory terms in (1) can be eliminated by a procedure applied to the 15 values
Sm(k) (n—4 <m < njk=gq—1,9,¢+1). For each k, R = |z|* satisfies a quartic equation
with coefficients formed from the five S,(k). The root can be found by elimination, which yields
a linear equation because the quartics have no quadratic term. A set of auxiliary equations yields
the G. In addition, if the assumption of a single dominant mode is correct, the value of R must
also satisfy an equation

(Gt (o



The function on the left side of (2) is a “barrier function” in the sense that its sign is precisely
sensitive to the stability barrier, i.e. to whether A) is inside or outside the absolute stability

region.

3 A Modified Order Selection Algorithm

A modified order selection algorithm is now possible for BDF solvers, by adding to the existing
order selection rules (based on local errors) a test to detect the presence of a BDF stability limit.
The following is a crude algorithm for this, denoted STALD: STAbility Limit Detection. It includes
various consistency checks to verify the validity of the dominant mode model.

Algorithm: STALD

1. If both ¢ and h have been constant for at least 5 steps, with ¢ > 3, collect the 15 values of
Sm(k).

2. For each k, look at the variance of the four ratios Sm+41(k)/Sn (k). If it is small for each &,
get R from these ratios (the corresponding 2 x 2 Jacobian is normal or nearly normal). If
the R values are not consistent, then exit. If a consistent R is found, go to step 4.

3. Form the three quartics @Qx(R), and eliminate to get a tentative R. If the Qx are dependent
(elimination is impossible), exit. Evaluate the Qx(R) and do Newton corrections to improve
R if necessary. If the new values of Qx(R) are not all small, exit.

4. For the given R, compute the three G, and the solution R = Rp of Eqn. (2). If Rp disagrees
with R, exit.

5. f R~ 1or R > 1, signal a reduction in order (the stability barrier has been reached or
exceeded).

We have modified the VODE solver [2] to include the STALD algorithm. VODE contains both
Adams and BDF methods, with the latter going up to order 5. The algorithm involves a number of
heuristic (tuning) quantities, and these have been given tentative values, subject to change in light
of further testing. The scaled derivative norms are easily available, because VODE uses a Nordsieck
history array. For £k = ¢ or ¢ — 1, we need only multiply the k-th Nordsieck vector by k!, and for
k = q + 1, a convenient multiple of the estimated local error norm (which is already computed)
gives the required scaled derivative norm. The procedure for the stability limit determination,
represented by steps 2-4 in the above algorithm, is carried out in a separate subroutine, and a
flag returned to the central integration step routine. Then, if a positive determination was made,
an order reduction is forced. The stepsize is reset to the value that would have been used on an
order reduction by the existing criteria, i.e. a value based on the estimated local error at order
qg—1

The modified VODE solver was first tested on the 2 x 2 problem used in the stand-alone tests
reported in (3], which has eigenvalues —10 £ 100:. It performed very much as expected. In a
typical case, at a point where the integration was proceeding at order 5, the algorithm forced
an order reduction from 5 to 4, then shortly thereafter from 4 to 3. Following that there was a
dramatic increase in step size, which did not occur in the integration by the unalterd solver.



4 Advection-Diffusion Tests

Here we test the STALD algorithm on a simple advection-diffusion PDE in one dimension with
constant coeflicients, namely

Ou /0t = DO*u/dz?® — VOou/dx, (3)

on the unit interval in z. We pose a Dirichlet boundary condition u = .5 at the left and a Neumann
boundary condition u, = 0 at the right. For initial conditions, we pose a polynomial profile, peaked
in the center and satisfying the boundary conditions: u(0,z) =1 — (2z — 1)? + (22 — 1)*/2.

We use a uniform mesh of M + 1 points (spacing Az = 1/M), and apply standard central
differencing for the spatial derivatives. Other differencing schemes (such as biased upwind) may
be as good or better, but any sufficiently accurate scheme will have eigenvalues near the imaginary
axis, and it is only that feature that is relevant here.

We retain discrete values u; of u at z; = jAz with j = 1,..., M, and represent the boundary
conditions by taking uo = .5 in the ODE for u; and upr41 = upas—1 in the ODE for ups. In the
resulting ODE system gy = Ay+b (where b comes only from the left boundary value), the tridiagonal
matrix A involves the dimensionless coefficients d = D/Az? and a = V/2Az. The eigenvalues are
complex when the grid Peclet number P = a/d exceeds 1, and in that case the spectrum is given
by A; = 2d[~1+1iv/ P? — 1 cos 9;], where the ; are the roots of Ptan My, +v; =0 (0 < ¢; < 7).
The two extreme eigenvalues have a slope of [Im(A)/Re()A)| = v/ P? —1cos,. For large M and
P, this is approximately P. Thus with reference to the BDF stability regions, a stability limit
exists at order 3 or more if P > 14.4, at order 4 or more if P > 3.34, and at order 5 if P > 1.27,
roughly.

In our tests with VODE, we fix V = 20, and take three values of D and three values of
M, as shown in Table 1. We integrate to t; = .25 in all cases, which is well beyond the time
1/V = .05 required for the profile to exit the domain. Thus we expect that stepsizes will be
limited by accuracy requirements until roughly ¢ = .05, but then should grow considerably, unless
limited either by spurious oscillations or by the BDF stability limit. We use scalar tolerances
RTOL = ATOL = 107° in all cases. For each case, Table 1 gives the total number of steps to
completion for the unaltered VODE and the modified VODE + STALD algorithm. The step count
is a reasonable cost measure for these problems, as other measures show about the same relative
comparison between runs.

The modifed VODE results in a reduced number of steps in most cases, by ratios as large as
3.7. To see in more detail the beneficial effects of the STALD algorithm, the Figures 2 and 3 below
show the order ¢ and stepsize h used by the two versions of the solver as a function of time ¢, for
the case D = .005, M = 200. In Figure 2(b), the asterisks mark the two order reductions forced
by the STALD algorithm. Figure 3 shows the corresponding stepsizes, and their rapid growth
following the order reductions with the modified VODE.

, In some cases, however, the savings for the modified solver are small or nonexistent. In one

case, where P = 2.5, this is simply because there is no BDF stability limit. In the others, the
solution retains oscillations that limit the stepsize to the cell crossing time At, = Az/V = 1/2a.
This value is approximately equal to the limiting step size when a BDF stability limit exists. The
benefits of the STALD algorithm cannot be realized unless and until the stepsizes appropriate for
accurate resolution exceed At,.

Another way to avoid the stability limit problem with a solver like VODE is to limit the
maximum method order to an appropriate value. So for a further comparison, the next two

)



V]| D | M| P |Steps- VODE | Steps - modVODE ||
20

.01 [ 100 10 LYl 399
201 .01 {200 5 975 355
20| .01 [400| 2.5 549 549
201 .005 | 100 | 20 647 485
20 | .005 | 200 | 10 1225 351
20 | .005 | 400 | 5 1880 505
20 | .002 | 100 | 50 762 874
20| .002 [ 200 | 25 1653 1579
20 | .002 | 400 | 12.5 2487 765

Table 1: Number of steps for VODE and Modified VODE on the advection-diffusion problem

figures show the result of running VODE (unaltered) on the same case, D = .005, M = 200, with
the use of the optional input MAXORD (maximum order). Figure 4 shows order ¢ vs t, and Figure
5 shows stepsize h vs t, each for the cases (a) MAXORD = 3, and (b) MAXORD = 2. The step
counts were 667 in case (a) and 582 in case (b). Thus the use of MAXORD in this case, while
giving much lower costs than the default input (1225 steps), still is not quite as efficient as the
modified VODE + STALD (551 steps). In some other cases, however, the results using MAXORD
were more efficient than those from VODE + STALD. But in any case, the cost is quite sensitive
to the value of MAXORD, and in practice one rarely knows the correct optimal value of it.
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Figure 2: Order ¢ vs ¢ for D = .005, M = 200, with (a) unaltered VODE, and (b) modified VODE.
The asterisks * mark order reductions forced by the STALD algorithm.
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Figure 3: Stepsize £ vs ¢ for D = .005, M = 200, with (2) unaltered VODE, (b) modified VODE.
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Figure 4: Order ¢ vs ¢ for D = .005, M = 200, unaltered VODE with specified maximum order
MAXORD. The two cases are: (a) MAXORD = 3, (b) MAXORD = 2.
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Figure 5: Stepsize h vs t for D = .005, M = 200, unaltered VODE with specified maximum order

MAXORD. The two cases are: (a) MAXORD = 3, (b) MAXORD = 2.



